That wasn’t in the (LMC555) datasheet :(

So I was making an one-off circuit to drive some things from an RPi and I needed a level shifter. Turns out that a CMOS 555 (on paper) looks like a pretty good bet if you need an ad-hoc solution with mild performance requirements. The TI LMC555 runs all the way down to 3V or so, and can source 100mA from the output. Being CMOS, the output goes more or less to the rails.

So far so good. The way to set it up is to power it off the high side, wire it in Schmitt trigger configuration (pin 6 to pin 2), and set the control voltage at 2/3 of the lower level. And that works just fine.

One problem, it seems that despite being specced to run off 3V, the current sourcing capability drops drastically under about 6V, to the point where at 5V it will only source about 12mA! That’s something of a pity because I needed those 100mA, or more than 12 at any rate, and annoyingly it doesn’t appear to be mentioned anywhere in the datasheet.


On the other hand, I’m glad I bought those jellybeans a while back. I replaced the 555 with a high side PNP switch (a now discontinued BC638 in a small TO92 from one of those Maplin grab bags)  who’s base is driven from a chunky STP55 (a giant TO220) since the latter switches adequate current at only 1V. The 2N7000 is kind of marginal for getting the high base current required to get a low saturated Vce when driven from  3.3V.

So, mission accomplished, but I’m still annoyed about the serious derating. I’ll make a graph when I figure out how to get my scope to act as a data logger.

EDIT: That was way easier than I thought. You can save traces via rather awkward interface to a USB stick in the front panel. So, I set up a 555 to output high into a 10 Ohm load and cranked the supply voltage by hand, measuring the supply and drop across the load. And here’s the result:

The LMC555 hist 100mA at 12V compared to 3 for the LM555

Graph of output pin current into a 10 Ohm load against supply voltage

Well, turns out the LMC555 has a rather high output resistance. The bipolar LM555 on the other hand is a bit of a beast and will give tons of current if you don’t mind the quite high (over a volt) drop at the output.